CHLOROPLAST GENOME CHARACTERIZATION OF LYCOPODIUM CERNUUM L.

KANZARIYA, R., KANAGARA, K., BHATT, P.,¹ MONPARA, J.,¹ CHUDASAMA, K. AND THAKER, V.*

Plant Biotechnology and Molecular Biology Lab, Department of Biosciences, Saurashtra University, Rajkot, 360 005, ¹Vimal Research Society for Agro-Biotech and Cosmic Powers 80 feet road, Aji area, Rajkot 360 003, Gujarat, India. E. mail: thakervs@gmail.com, Cell: 096876 92945

Received: June 11, 2021; Accpted: July 18, 021

Abstract: The pteridophyte species Lycopodium cernuum is common species found in Indian forests where abundant water is available. It has well studied for its alkaloids and possess many medicinal uses. In present study we extracted chloroplast (cp) DNA from L. cernuum. The quantity and quality of this extracted cp DNA was checked and it's subjected to high throughput sequencing. Obtained reads were assembled based on reference-based assembly and annotated using available servers. Some annotations were manually corrected and this cp genome was deposited in NCBI database with accession number MW538913. It was compared with other available cp genomes of Lycopodiopsida and differences in genome see, GC content, gene numbers, tRNA numbers were observed. We also report microsatellite markers for both Lycopodium species. The Phylogenetic analysis with available 35 Lycopodiopsida species were discussed.

Keywords: Lycopodium cernuum, chloroplast genome, Phylogeny, Pteridophyte

INTRODUCTION

Lycopodium, commonly known as Club moss, Clubfoot Moss, Foxtail, Ground Pine, Sulfer, Wolf's Claw is one of the most widespread species belonging to the family Lycopodiaceae [1]. This spore-bearing vascular plant is used in various traditional systems of medicines. These plants grow best in various areas such as high altitude, in the highlands, in grassy areas. *Lycopodium cernuum* – stem creeping, mostly found on mosses and litter, up to 2.5 mm thick; branches erect from ascending base, branched, up to 30 cm in height. Mature leaves monomorphic, linear, 2.5–5 mm, narrowly acute, with 1.5–4 mm long apical hair tip usually in 12–16 indistinct rows. 2n = 68. Arctic circumpolar distribution [2]. The *Lycopodium* alkaloids are of great importance due to their biological activity and unique chemical compounds [3].

Chloroplasts are active metabolic centers that sustain life on earth by converting solar energy to carbohydrates through the process of photosynthesis and oxygen release. Although photosynthesis is often recognized as the key function of plastids, they also play vital roles in other aspects of plant physiology and development, including the synthesis of amino acids, nucleotides, fatty acids, phytohormones, vitamins and a plethora of metabolites, and the assimilation of sulphur and nitrogen [4]. Metabolites that are synthesized in chloroplasts are important for plant interactions with their environment (responses to heat, drought, salt, light, and so on) and their defence against invading pathogens [5]. Chloroplasts are semi-autonomous organelles possessing their own genetic material - the chloroplast genome or plastome. The chloroplast DNA (cpDNA) of higher plants are double-stranded molecules of relatively small size, ranging from 35 to 217 kilobases (kb) with most of the photosynthetic organisms in the range of 115 to 165 kb. Only a proportion of the total cpDNA is circular as opposed to earlier views [6]. They are present in 1,000–10,000 copies per cell. In 1986, the chloroplast genomes of tobacco and the liverwort Marchantia polymorpha were sequenced [7,8], making these two the first complete plastome sequences. During the last two decades, plastome sequences have increased at a rapid rate and, currently, many complete plastid genomes are available in NCBI database. Insights gained from complete chloroplast genome sequences have enhanced our understanding of plant biology and diversity; chloroplast genomes have made significant contributions to phylogenetic studies of several plant families and to resolving evolutionary relationships within phylogenetic clades [5].

As the chloroplast genome of pteridophyte are less in number and on the basis of literature this is the first report from India to sequence the chloroplast genome of pteridophyte species. In previous study, we have reported mitochondrial genome of *L*. *cernuum* [9]. In the present study, we have sequenced chloroplast genome of *L*. *cernuum* and deposited in NCBI database. We are giving its comparative analysis with the already available cpgenome of *L*. *clavatum*.

MATERIALS AND METHODS

Lyophilised leaf powder was used for cpDNA extraction. The Chloroplast DNA was extracted from *L. cernuum* using a standard protocol of Bhatt and Thaker [10]. The Chloroplast DNA quality and quantity were assessed based on spectrophotometry and purity was checked on 1% agarose gel electrophoresis. This DNA was subjected to high throughput sequencing using an ion-torrent genome machine and reads were obtained by torrent suit software version v3.0

Data collection:From NCBI organelle database complete Lycopodiopsida chloroplast sequences retrieved are *Huperzia lucidula* (NC_006861), *Huperzia serrata* (NC_033874), *Isoetes butleri* (NC_038071), *Isoetes cangae* (NC_039392), *Isoetes*

engelmannii (NC 038080), Isoetes flaccida (NC 014675), Isoetes graniticola (NC 039821), Isoetes mattaponica (NC 039703), Isoetes melanospora (NC 038072), Isoetes nuttallii NC 038073, Isoetes serracarajensis (NC 039393), Isoetes valida (NC 038074), Isoetes yunguiensis (NC 04-1146), Phlegmariurus carinatus (NC 050663), Selaginella bisulcate (NC 041640), Selaginella doederleinii (NC 041641), Selaginella hainanensis (NC 041642), Selaginella indica (NC 041098), Selaginella lyallii (NC 041556), Selaginella pennata (NC 041643), Selaginella remotifolia (NC 041644), Selaginella sanguinolenta (NC 0-41645), Selaginella tamariscina (NC 041646), Selaginella vardei (NC 041099), Selaginella uncinata (MG272483), Dendrolycopodium obscurum (NC 040923), Diphasiastrum digitatum (NC 040993), Isoetes malinverniana (NC 040924), Isoetes piedmontana (NC 040925), Lycopodium clavatum (NC_040994), Selaginella kraussiana (NC 040926), Selaginella lepidophylla (MK0895-31) and Selaginella moellendorffii (NC 013086).

Genome Structure Analyses: Geneious was used in gene size, regions comparison, GC content calculation from the fifteen cpgenome. ChloroMitoSSRDB [11] was used to detect microsatellites (mono-,di-,tri-,tetra-,penta-, hexanucleotide repeats) with the default settings of MISA and without primer synthesis model was used. Gene which are varied in size were further subjected for analysis of variable sites, parsimony informative sites, and nucleotide diversity. Multiple sequence alignment of these genes was performed in Clustal X2 [12], this alignment was exported in MEGA X [13].

Phylogenetic analyses:To estimate phylogenetic relationships within the Lycopodiaceae. Plastomes of *L. cernuum* and 34 lycopodiopsida species were selected. Common protein-coding genes were identified and concatenated protein-coding sequences were prepared. Multiple sequence alignment of these concatenated sequences was performed using CLC genomics workbench v12. This alignment was exported to MEGA X and a phylogenetic tree was prepared using the maximum likelihood method using 1000 bootstrap replicates.

RESULT AND DISCUSSION

In NCBI organelle database total 5197 chloroplast genomes and 375 mitochondrial genomes are

Kanzariya et al.

Sr.no.	Organism Name	Size (bp)	GC%	CDS	Genes	Ps eu doge ne	rRNA	tRNAs	Country	Accession no.
1	Lycopodium cernnum	106709	37.8	66	88	3	7	15	India	M W538913
2	Huperzia lucidula	154373	36.25	87	129	1	8	33	USA	NC_006861
3	Selaginella moellendorffii	14378	51	70	101	3	8	15	Canada	NC_013086
4	Isoetes flaccida	145303	37.94	84	136	7	8	37	USA	NC_014675
5	Huperzia serrata	0.154176	36.28	87	131	1	8	35	China	NC_033874
6	Isoetes butleri	0.144912	38.02	84	136	7	8	37	USA	NC_038071
7	Isoetes cangae	0.14338	37.71	83	119	0	7	29	Brazil	NC_039392
8	Isoetes engelmannii	0.144817	38.05	84	136	7	8	37	USA	NC_038080
9	Isoetes graniticola	0.145118	37.99	84	136	7	8	37	USA	NC_039821
10	Isoetes mattaponica	0.145065	37.98	84	136	7	8	37	USA	NC_039703
11	Isoetes melanospora	0.145045	38	84	136	7	8	37	USA	NC_038072
12	Isoetes nuttallii	0.14468	38.18	84	136	7	8	37	USA	NC_038073
13	Isoetes serracarajensis	0.14338	37.71	83	119	0	7	29	Brazil	NC_039393
14	Isoetes valida	0.145132	37.99	84	136	7	8	37	USA	NC_038074
15	Selaginella uncinata	0.144161	54.88	81	107	3	8	15	China	MG272483
16	Selaginella vardei	0.121254	53.21	64	85	1	8	12	China	NC_041099
17	Dendrolycopodium obscurum	0.160877	34.99	88	133	1	8	36	USA	NC_040923
18	Diphasi astrum dig itatum	0.159614	35.72	88	133	1	8	36	USA	NC_040993
19	Isoetes malinverniana	0.145535	38	84	130	0	8	38	USA	NC_040924
20	Iso etes pie dmont ana	0.14503	37.99	84	136	7	8	37	USA	NC_040925
21	Lycopodium clavatum	0.151819	34.49	88	133	1	8	36	USA	NC_040994
22	Sel agi ne lla bis ulcata	0.140509	52.77	62	104	19	8	15	China	NC_041640
23	Sel agi ne lla doe derl ein ii	0.142752	51.13	76	103	3	8	16	China	NC_041641
24	Sel agi ne lla h ainan en sis	0.144201	54.83	80	107	4	8	15	China	NC_041642
25	Sel agi ne lla kraussian a	0.129971	52.33	74	94	1	8	11	USA	NC_040926
26	Sel agi nella penn ata	0.138024	52.92	74	99	6	8	11	China	NC_041643
27	Sel agi nella remoti foli a	0.131867	56.5	73	96	1	8	14	China	NC_041644
28	S el agi ne lla san gui nole nta	0.147148	50.78	69	113	11	8	25	China	NC_041645
29	Sel agi ne lla tam ariscina	0.1267	54.06	62	80	1	8	9	China	NC_041646
30	Iso ete s yung uie nsis	0.145355	37.99	84	135	7	8	36	China	NC 041146
31	Sel agi ne lla i ndica	0.12246	53.55	64	87	1	8	14	China	NC_041098
32	Sel agi ne lla lepidoph yll a	0.114693	51.94	64	87	2	8	13	USA	MK089531
33	Selaginella lyallii	0.110411	50.75	61	84	0	8	15	China	NC_041556
34	Ph legm ariur us carin atus	0.150349	33.98	79	120	0	8	33	China	NC_050663
35	Ph legm ariur us ph le gm aria	0.149711	33.8	53	90	1	6	30	China	NC_052703

Table 1: Comparative features of all Lycopodiopsida chloroplast genomes

 Table 2: Gene identified in the Chloroplast genome of L. cernuum

Category of genes	Group of genes	Name of genes	
Genes for photosynthesis	Subunits of ATP synthase	atpB, $atpE$, $atpF$, $atpH$, $atpI$	
Genes for photosynthesis	Subunits of photosystem II	ps bA, p sbB, p sbC, psbD, psbF, psbJ, ps bL, psbN, psbT, psbZ, ycf3	
Genes for photosynthesis	Subunits of NADH-dehydrogenase	ndh A, ndhB, ndhC, ndhD, ndhE, ndhG, ndhH, ndhI, ndhJ, ndhK	
Genes for photosynthesis	Subunits of cytochrome b/f com plex	petA, petD	
Genes for photosynthesis	Subunits of photosystem I	psaA, psaA, psaB, psaB, psaC	
Genes for photosynthesis	Subunit of rubisco	rbcL	
Self-rep lication	Large subunit of ribosom e	rpl14, rpl2, rpl20, rpl33	
Self-replication	Small subunit of rib os ome	rps11, rps14, rps15, rps18, rps19, rps2, rps4, rps8	
Other genes	Subunit of Acetyl-CoA-carboxylase	accD	
Other genes	c-type cytochrom synthesis gene	ccsA	
Other genes	Envelop membrane protein	cemA	
Other genes	Protease	clpP	
Unkown	Conserved open reading frames	ycf1, ycf2, ycf4	

available as of April 2021, from these 34 of chloroplast and only 1 of mitochondrial belong to Lycopodiopsida. This is the first report of chloroplast genome sequencing from the Indian lab for Lycopodiopsida.

Chloroplast genome structure: The chloroplast genome of L. cernuum was sequenced and obtained reads were of good quality with no adapter contamination. The chloroplast genome of Lycopodium cernuum (Fig.1) was compared with the already available chloroplast genome of L. clavatum and three other species of family Lycopodiaceae was taken for comparison. All the species of Lycopodiopsida had a typical quadripartite structure, with a circular molecule of 106709 bp to 160877 bp in length. A number of genes ranges from 88 to 136 and the number of proteins from 53 to 88. However, the number of tRNAs are lowest in L. cernuum but still no such big difference is there in protein-coding genes. Overall GC content for these genomes varies from 34 to 37 (Table 1). The highest GC content from all four regions is for IR region and about 84 protein-coding genes primarily participating in photosynthesis, transcription and translation. Their number size does not directly correlate with plastome size [5]. The chloroplast genomes of land plants have highly conserved structures and organization of content; they comprise a single circular molecule with a quadripartite structure that includes two copies of an IR region that separate large and small singlecopy (LSC and SSC) regions. The chloroplast genome includes 120-130 genes, primarily particip-ating in photosynthesis, transcription, and translation [5]. Recent studies have identified significant diversity within non-coding intergenic spacer regions, which often include chief regulatory sequences [14]. Certain lineages of land-plant chloroplast genomes also show

Table 3: Comparative analysis of introns in cpDNA of twoLycopodium species

Genes	L. Cern uum	L. Clavat um
rpl2	1	1
rpl19	1	-
c lpP	2	2
trnK-UUU	2	2
trnL-UAA	-	2
ycf3	2	2
trnK-UUU	-	2
trnL-CAA	-	2
trnW-CCA	-	2
atpF	1	1
rp oC1	-	1
ndhB	1	1
trnE-UUC	2	2
trnA-UGC	2	2
ycfl	-	1
ndhA	1	1
trnA-UGC	2	2
trnE-UUC	2	2

significant structural rearrangements, with evidence of the loss of IR regions or entire gene families [15].

Gene identified in the chloroplast genome of L. cernuum .: These can be divided into three broad categories: The first category comprises of genes for the photosynthetic apparatus. This category includes photosystem I (psaA, psaB, etc.), photosystem II (psbA, psbB, etc.), cytochrome b6f (*petA*, *petB*, etc.), ATP synthase (*atpA*, *atpB*, etc.), RuBisCo (rbcL) and NAD(P)H dehydrogenase genes (ndhA, ndhB, etc.). The second category comprises RNA genes and genes for the genetic apparatus. This includes transfer RNA (trnH, trnK, etc.), ribosomal RNA (rrn16, rrn5, etc.), RNA polymerase (rpoA, rpoB, etc.) and ribosomal subunit genes (rps2, rps3, rpl2, rpl16, etc.). The third category comprises of conserved ORFs called and potential protein-coding genes like matK and cemA (Table 2). In comparative intron content study intron loss in rpl19 gene in L. clavatum is observed, while intron

Table 4: Type and size of SSRs in the L. cernuum and L. clavatum chloroplast genome

SSR L. cernuum	Size	Gen e Name	Start	End
(T)10	10	petD- pet B	6080	6089
(A)10	10	psbD- clpP	10506	10515
(T)11	11	rps12	13087	13097
(T)10	10	rps12, petA- cemA	19055	19064
(A)11ttgtttaaa(T)12	32	rps12, ycf3	31535	31566
(G)10	10	rps12	32732	32741
(T)10	10	rps12,	44286	44295
(A)10	10	rps 12, psbD- psbA	44516	44525
(TA)6	12	rps 12, psbD- psbA	48236	48247
(A)11	11	rps12, atpF	56796	56806
(AT)7tc(T)10	26	rps12, ndhB	71541	71566
(A)10	10	rps12, ndhB	71937	71946
(T)11	11	rps12, ndhB	72087	72097
(GA)6	12	ndhH	88824	88835
(A)10ggaaaaaaac(T)11	31	ndhA	90695	90725

Continue table 4

SSR L. clavatum				
(A)10	10	rpl23	523	532
(A)11	11	rpl2	1418	1428
(TA)10	20	rps8- infA	6381	6400
(A)11	11	rpoA- petD	8670	8680
(T)10	10	p etD	9578	9587
(AT)7tatatatat (TA)8 tttt cctttctctattg(A)11	67	pet B	11175	11241
(T)11	11	pet B	11473	11483
(A)10	10	psbB-clpP	15498	15507
(T)12	12	rns12- rnl20	18341	18352
(A)11	11	rps12- rpl20	19345	19355
(A)12	12	rpl20- rps18	21315	21326
(T)13	13	psaJ- petG	22797	22809
(A)10	10	nsa.I- petG	23257	23266
(T)10	10	net L- nshE	24334	24343
(C)10	10	petL- psbE	24578	24587
(A)13	13	cemA-vcf4	30542	30554
(T)10attact att tcctcttgactagg(A)10	43	ndh.I-rps4	42266	42308
(T)11	11	ndhJ-rps4	44117	44127
(A)14	14	rps4-vcf3	45725	45738
(A)11tt gtttaaa(T)12	32	vcB	47503	47534
(T)10	10	nshD-vcf?c	57684	57693
(A)13	13	nshD- vcf2c	58189	58201
(T)10	10	psoD yoj2c nshD ycf2c	58692	58701
(1)10	10	nshD- vcf2c	59009	59018
(A)11	11	nshD- vcf2c	59609	59619
(A)10	10	nshD- vcf2c	59909	59918
(TAA)5	15	vcf2c	63411	63425
(TAA)) (T)11	11	vcf2n - nshA	66890	66900
(T)11 (T)12	12	yG2n - psbA ycf2n - nshA	67704	67715
(T)12	10	matK trnK	70845	70854
(1)10 (AT)10	20	chIR_ nshK	75543	75562
(TA)9	18	nshK-nshl	76531	76548
(A)11	11	ns hl-ns aM	77044	77054
(A)10	10	psot psam	77332	77341
(A)10	32	psol-psum	77763	77704
(A)12Catatata(1)12 (A A T)8	24	vcfl2- atn4	79856	79879
(A)11	11	athE	83003	83013
(A) 13 ga	11	uipi	83003	05015
cteete ca ag ga a ttogee a aa ca aa ta aa toat taga go	122	at nF- at nH	83690	83811
a gaggatta at ca t ca a taat (A) 10	122	urpi urpii	05070	05011
(T)10	10	rpoc 2- rpocl	91677	91686
(A)12	12	rpoc1	93791	93802
(T)12 (T)11	11	rn oB- netN	97796	97806
(AT)8t tttt ca ta ttc tcgt att aa aga at gt at aa tat aa at				,,
at ata aa ta ta tata a ata ta ta aa tat ata a (AT)7	101	rp oB- petN	98536	98636
(TTA)11	33	psbM- ndhB	100223	100255
(AT)7tc(T)10	26	ndhB	102573	102598
(A)10	10	ndhB	102969	102978
(T)11	11	ndhB	103119	103129
(G)12	12	rps12 -chlL	106980	106991
(A)10	10		110602	110611
(T)10	10	chlN - vcfl	120893	120902
(A)14	14	vcf1 -rns15	126143	126156
(GA)6	12	ndhH	1272.09	127220
(A)10ggaaaaaac(T)11	31	ndhA	128882	128912
(T)10	10	n dh D - c cs A	134169	134178
(T)13	13	ccsA - rnl32	135917	135929
(AT) 6a agtt ggatettt tet tte tgat tea ge at ga at agat			100711	100727
a cta c aa tat aa ac aa aa a ctc a ctt tttta(T)10	91	ccsA -rnl32	136119	136209
(T)10	10	trnA- trnL	146852	146861
(C)12	12	trn V	150472	150483

J. Cell Tissue Research

Table 5: Chloroplast genome sequences	used for phylogenetic tr	ree construction with	their accession numbers and
classification			

Species Name	GenBank ID	Classification		
Lycopodium cernuum	MW538913	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Lycopodiales; Lycopodiaceae: Lycopodioideae: Lycopodium		
Huperzia lucidula	NC_006861	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Lycopodiales; Lycopodiaceae; Huperzioideae; <i>Huperzia</i>		
Huperzia serrata	NC_033874	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Lycopodiales; Lycopodiaceae; Huperzioideae; <i>Huperzia</i>		
Isoetes butleri	NC_038071	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; Isoetes		
Isoetes cangae	NC_039392	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; Isoetes		
Isoetes engelmannii	NC_038080	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; <i>Isoetes</i>		
Isoetes flaccida	NC_014675	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; <i>Isoetes</i>		
Isoetes graniticola	NC_039821	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; <i>Isoetes</i>		
Is oete s mattaponi ca	NC_039703	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; Isoetes		
Iso ete s mel anospora	NC_038072	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; <i>Isoetes</i>		
Isoetes nuttallii	NC_038073	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; Isoetes		
Iso etes serracarajens is	NC_039393	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; <i>Isoetes</i>		
Is oete svalida	NC_038074	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; <i>Isoetes</i>		
Isoet es yunguien sis	NC_041146	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; Isoetes		
Phlegmari urus cari natus	NC_050663	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Lycopodiales; Lycopodiaceae; Huperzioideae; <i>Phlegmariurus</i>		
Sel aginel la bi sulcat a	NC_041640	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; Selaginella		
Sel aginel la doede rle inii	NC_041641	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; Selaginella		
Sel aginel la hainane nsis	NC_041642	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; <i>Selaginella</i>		
Selaginella indica	NC_041098	Eukaryota; Diaphoreti ckes; Archaeplasti da; Plantae; Streptophyta; Embryophytes; Polysporangi ophytes; Tracheophytes; Lycophytes; Lycopodiopsi da; Selaginellales; Selaginellaceae: <i>Selaginella</i>		
Selagi nell a lyal lii	NC_041556	Eukaryota; Diaphoreti ckes; Archaeplasti da; Plantae; Streptophyta; Embryophytes; Polysporangi ophytes; Tracheophytes; Lycophytes; Lycopodiopsi da; Selaginellales; Selaginellaceae; Selaginella		
Selaginella pennata	NC_041643	Eukaryota; Diaphoreti ckes; Archaepl asti da; Plantae; Streptophyta; Embryophytes; Polysporangi ophytes; Tracheophytes; Lycophytes; Lycopodiopsi da; Selaginellales; Selaginellaceae; Selaginella		
Sel aginel la remotifoli a	NC_041644	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; <i>Selaginella</i>		

Sel aginel la sangui no lent a	NC_041645	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; <i>Selaginella</i>
Sel aginel la tamarisc ina	NC_041646	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; Selaginella
Sel aginel la varde i	NC_041099	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; <i>Selaginella</i>
Sel aginel la unc inata	M G272483	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; <i>Selaginella</i>
Dendr ol yc opodium obscurum	NC_040923	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Lycopodiales; Lycopodiaceae; Lycopodi oideae; <i>Dendrolycopo di um</i>
Diphasias trum digitatum	NC_040993	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Lycopodiales; Lycopodiaceae; Lycopodioideae; <i>Diphasiastru m</i>
Iso ete s mal inve rniana	NC_040924	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; Isoetes
Iso ete s pie dmontana	NC_040925	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Isoetales; Isoetaceae; <i>Isoetes</i>
Lycopodium clavatum	NC_040994	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Lycopodiales; Lycopodiaceae; Lycopodi oideae; <i>Lycopodi um</i>
Sel aginel la kraussian a	NC_040926	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; <i>Selaginella</i>
Sel aginel la lepidophyl la	M K089531	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellaceae; Selaginella; Selaginella; Selaginel laceae; <i>Sel aginel la</i>
Sel aginel la moe llend orffii	NC_013086	Eukaryota; Diaphoretickes; Archaeplastida; Plantae; Streptophyta; Embryophytes; Polysporangiophytes; Tracheophytes; Lycophytes; Lycopodiopsida; Selaginellales; Selaginellaceae; Selaginella

Continue table 5

loss in *L. cernuum* is found in *trnL-UAA*, *trnK-UUU*, *trnL-CAA*, *trnW-CCA*, *rpoC1* and *ycf1* (Table 3).

Simple sequence repeat (SSR) in L. cernuum and L. clavatum: Repeats in two cp genomes were analyzed using MISA server including two species of L. cernuum and L. clavatum . The total numbers of SSRs were also identified in the cp genomes of the two species. From analyzed types of Mononucleotide repeats founds 10 SSRs. Microsatellite repeats 57 were found in L. clavatum while the number of repeats 15 were found in L. cernuum (Table 4). The longest repeats, with a length of 32 bp (rps12 & ycf3) in lycopodium cernuum and the longest repeats, with a length of 122 bp (*atpF-atpH*) in Lycopodium clavatum. The total numbers of SSRs were also identified in the cp genomes of the two species. From repeat Mononucleotide repeats found in Lycopodium cernuum with 10 and Lycopodium clavatum 122 repeat mononucleotides. Lycopodium cernuum is 3 hexanucleotide and L. clavatum is 9 hexanucleotide. Simple sequence repeat (SSR), are widely dispersed over the genome and have a high degree of polymorphism [16]. As a

result, SSRs are widely used as a molecular marker for breeding [17], population genetics [18], genetic linkage map construction and gene mapping [19].

Phylogenetic analyses: Thirty-four conserved plastid protein-coding genes were used to reconstruct the phylogenetic framework using 34 species from previously published plastomes of land plants (from pteridophyte (Table 5). We downloaded the raw reads from GenBank, assembled plastid contigs and extracted the 32 gene sequences since the complete plastome of *L. lycopodium* has not been released on GenBank. A total of bp sequences were aligned at the protein level by CLC using the translation-aligned function in Geneious v. 9.1.4. The phylogenetic relationship among these species were presented in the figure 2 and *L. cernuum* shows the closest match with *L. clavatum*.

REFERENCES

- [1] Baytop, T.: J. Pharm. Istanbul Univ., 2: 312 (1999).
- [2] Saenz, A. Jonsell, S. and Froelich, P.: Physical review letters, 84(2): 242 (2000).

J. Cell Tissue Research

- [3] Ma, X. and Gang, D.: Nat. Prod. Rep., 21(6):752-772 (2004).
- [4] Pick, T.R. and Weber, A.P.: Front. Plant Sci., 5: 410 (2014).
- [5] Daniell, H., Lin, C.S., Yu, M. and Chang, W.J.: Biol., 17(1): 1-29 (2016).
- [6] Bendich, A.J.: The Plant Cell., 16 (7): 1661-1666 (2004).
- [7] Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z. and Aota, S.I.: Nature., 322: 572-574 (1986).
- [8] Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi Shinozaki, K. and Ohto, C.: The EMBO journal, 5: 2043-2049 (1986).
- [9] Kanagara, K., Kanzariya, R., Bhatt, P., Monpara, J., Chudasama, K., and Thaker, V.: J. Cell Tissue Res., 21(1): 7069-7076 (2021).
- [10] Bhatt, P. and Thaker, V.: Meta Gene, 29: 100921 (2021).
- [11] Sablok, A., Batra, A., Thariani, K., Batra, A., Bharti, R. Aggarwal, A.R., Kabi, B.C. and Chellani, H.: J. Clin. Endocrinol. Metab., 83: 536-541 (2015).

- [12] Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettig an, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R. and Thompson, J.D.: Bioinformatics, 23: 2947-2948 (2007).
- [13] Kumar, S., Stecher, G., Li. M., Knyaz, C. and Tamura, K.: Mol. Biol. Evol., 35: 1547 (2018).
- [14]Repetti, S.I. Jackson, C.J. Judd, L.M. Wick, R.R. Holt, K.E. and Verbruggen, H.: Peer J., 8: e8273 (2020).
- [15] Chiba, Y.: Cytologia., 16: 259-264 (1951).
- [16] Oldenburg, D. J. and Bendich, A. J.: Curr. Genet., 62: 431-442 (2016).
- [17] Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A. Yu, X.Q. and He, J.: CA: Cancer J. Clin., 66: 115-132 (2016).
- [18] Gupta, P.K. and Varshney, R.K.: Euphytica, 113: 163-185 (2000).
- [19] Varshney, R.K., Bertioli, D.J., Moretzsohn, M.D., Vadez, V., Krishnamurthy, L., Aruna, R., Nigam, S.N., Moss, B.J., Seetha, K., Ravi, K. and He, G.: Theor. Appl. Genet., 118: 729-739 (2009).